PHYSICAL PROPERTIES	GROUP 15(ns ² np ³)	GROUP 16(ns ² np ⁴)	GROUP 17(ns ² np ⁵)	GROUP 18(ns ² np ⁶)
Atomic(covalent) & ionic radii Across Period-↓ses(due to ↑se in effective nuclear charge) Across Group-↑ses(due to ↑ se in no. of Shell)	N to P- considerable ↑se As to Bi- small ↑se(inert pair effect)	16 <15	Smallest(eff. nu. ch. highest) in its period. $r_{\chi^-} > r_{\chi}$	At. Radius= Vander Waals Radius (larger than covalent or ionic) 18 >17(due to ↑se in electronic repulsion btwn completely filled valence shell)
Electronegativity(same reason) Across Period- ↑ses Across Group-↓ses	N is 3rd most e-ve element	16 >15, O is second most e-ve element	High, F is 1 st most e-ve element each halogen is the most e-ve element in its period(small size nd high eff nu ch)	
Ionisation Enthalpy(same reason) Across Period-↑ses Across Group-↓ses $\Delta H_1 < \Delta H_2 < \Delta H_3$	15 »14 (small size and extra stability of half filled porb) IE of N(to loose all 5 e) is very large. Sum of all 3 IEs for Bi& Sb is low enough	1 st IE of lighter el.(0, S, Se)< 15 (presence of half filled or.)	Very high(same reason), F- highest in group I-Smallest(shows some e+ve character- forms I * ion)	Very high, IE of Each element Highest in its period(due to presence of very stable completely filled valence shell)
Electron Gain Enthalpy (reason e-vity)	101	High, O Less -ve than S(O-high charge density)	F less -ve than CI(Reason LHS)	High +ve value of EGE No tendency to accept es (Same reason)

		p block Elefficities		
Across Period-(-ve) ↑ses			_	
Across Group-(-ve)↓ses			6	
Electropositivity	N,P-typical Non metal	O, S- Non metals(Non C),	All- typical non	
(Metallic & Non-Metallic	As, Sb- Metalloids	Se, Te- Metalloids(Semi C),	metals(high e-vity),	
Character/Conductivity)	Bi- typical metal	Po- Distinctly metal(Good C)	(0)	
Metallic C Across Group-↑	N,P- Conductor, As-poor,			
ses	Sb-Good, Bi- very good		(0)	
Non Metallic C Across		()		
Group-↓ses		,)		
Physical Appearance &	N- gas(diatomic molecule)	O-gas(diatomic, small size	All- diatomic,	All-Monoatomic gas($\frac{C_p}{C}$ =1.66)
Atomicity	P,As,Sb- Tetraatomic molecu	forms $p\pi - p\pi$ multiple bonds, Intermolecular force- weak	F,Cl- Gas, Br-Liquid,	G _V
Agglomerisation tendency	Bi- Monoatomic Solid,	vander walls force),	I-Solid	Colourless, odourless &tasteless
Across Group-1ses(VW	radioactive, $t_{1/2} = 1.9 \times 10^{19} \text{ yr.}$	other-solid(polyatomic,unable		diadiciess
force btwn molecules)	2	to form $p\pi - p\pi$ multiple bonds		
		due to large size, strong v w force)		
Density				
	N, P- low, As,Sb-higher,	S,Se-puckered ring structure		
	Bi-highest			
		Large diff. btwn 0 & S is due to		
	↑coc rogularly down d arn	O-diatomic & S- octaatomic		
M.P. & B.P.	↑ses regularly down d grp	MP(Po) <mp(te)(inert pair<="" td=""><td></td><td></td></mp(te)(inert>		
	$\mathcal{O}_{\mathcal{I}}$	effect)	Low	
	_			

_			P DIOCK LICITICITIES	
				Very low(very weak interatomic force)
				Much lower as compare to those substances of comparable MW.
				He-lowest
	Allotropy	Solid N- α -N(sc), β -N(hcp) P- white P(P ₄ tetrahedra), red P(P ₄ cage), Black P(layer) etc. As- grey metallic, stable forms- yellow, black etc. Sb- metallic, yellow or α & explosive.	O- diatomic(O_2)-more stable & Ozone(O_3) S- α,β,γ , homocyclic, plastic etc. Se-In crystalline form- red monoclinic, grey metallic. In Amorphous form- dark brown, vitreous & red amorphous.	
		Bi- No allotropes	Te- Metallic & Non metallic, Po- α , β both metallic	

Few Properties of Single Block

Group 16	Group 17	
Catenation(Across Group-↓ses)	Colour	
	(show colour due to absorption of Energy of light in visible range by	

p block Elements			
	outer es)		
	Down The Group no. of shell ↑ses →effective nuclear charge↓ses→ less energy		
	Required for Excitation of outer es		
O- little tendency, eg. Peroxide,	All-coloured,		
S- Greater tendency, eg, polysulphides S_n^{2-} , polysulphuric acid	F- Pale Yellow(absorbs violet)		
$(HO_3S - (S)_n - SO_3H)$ & different allotropes.	Cl- Greenish Yellow		
	Br- Red		
	I- Violet(absorbs yellow)		

CHEMICAL PROPERTY	GROUP 15	GROUP 16	GROUP 17
Oxidation State			
* Common Oxidation State	-3,+3 & +5	-2, +2,+4 & +6	-1,+1,+3,+5 & +7
* The Stability of oxdn state ↑ses & oxdn state	+3	+4	+5
↓ses down the group due to inert pair effect.	+5	+6	+7
* The tendency to exhibit			
oxdn state ↓ses down			
the group due to ↑ se in			
size & metallic character.			
* is more e+ve & does	-3	-2	-1

not show oven state	•		
not show oxdn state			
	Bi	Ро	
	-3	-2	10.
	* Covalency of N is restricted to 4(N		F → only -1
	cannot form compounds with +5 oxdn state) due to absence of d-orbital in valence shell.	F) -1 with peroxide.	+4 & +6 oxdn state of Cl, Br is observed in in oxides & oxoacids.
	* $N\rightarrow -3(NH_3, NCl_3, NBr_3)$	-2 ionic bonding +4 & +6 covalent bonding	
	* P \rightarrow +3(PCl ₃ , PBr ₃ , PCl ₃), +5(PCl ₅ ,P ₂ O ₅)	$S \rightarrow -2(S^{2^{-1}}), +4(SF_4), +6(SF_6)$	
	* N with O → +1,+2,+4	Se \rightarrow -2(Se ²⁻), +4(SeBr ₄)	
	* In case of N, all oxdn states from +1 to +4 tend to disproportionate in acid solution.	$Te \rightarrow -2(Te^{2-})$, +4($TeCl_4$)	
	For example,		
	$3 \text{ HNO}_2 \rightarrow \text{HNO}_3 + \text{H}_2\text{O} + 2\text{NO}$		